

THE NEW RIMES MODEL

Modeling the energy transition in a multiregional input-output approach – Compilation of input-output tables and a scenario analysis framework

Katharina Hembach-Stunden Britta Stöver, Philip Ulrich, Martin Distelkamp

WWW.GWS-OS.COM / © GWS 2025

Background information

Collaborative Project: Info-EW – Promoting the clean energy transition in Germany (2023 – 2026)

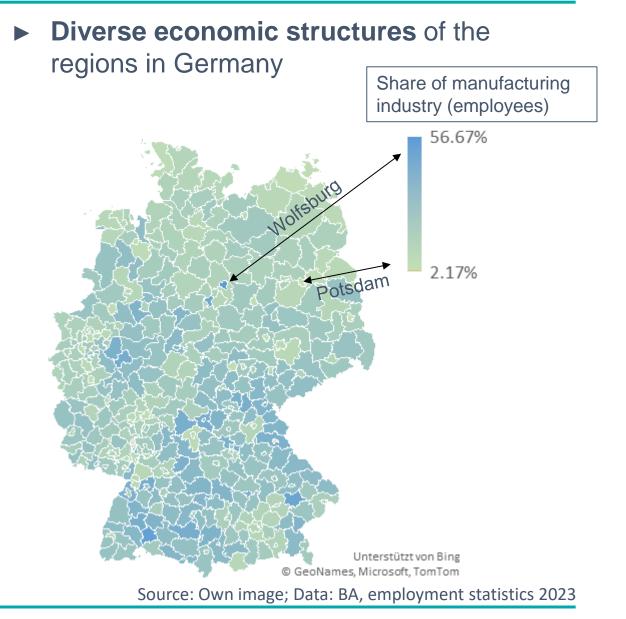
- Potsdam Institute for Climate Impact Research (PIK, synthetic population/households),
- EWAS-Institute (Stakeholder process)
- HahnIT (Dashboard development)

What do we do?

- Combination of synthetic population (38 million households) and MRIO modeling
- Analysis of economic, social and structural impacts of decarbonisation
- Results at fine regional scale (NUTS 3 level)
- Development of an interactive dashboard for regional energy transition analysis
- Open-access tool for policy- and decisionmakers

What makes the project unique?

- Household-level and economic integration
- ► High spatial resolution and actionable insights
- Create a standardized scenario analysis framework for municipal stakeholders
- Systematic transfer of scientific results into the practice of municipal actors in a transdisciplinary and participatory process.


RIMES – a new subnational multiregional Input-Output model

- New MRIO features:
 - o Interlinkages with INFORGE/LÄNDER enable the compilation of historical and projected data
 - **Regional resolution**: 400 NUTS 3 regions (districts) of Germany
 - Economic resolution: 37 industries
- ► Six steps of compilation:
 - Preparation of **regionalisation factor**: Employment data
 - Step A: Regionalised production and intermediate uses

	Step B: Regionalised final demand Step C: International exports and imports	Where in Germany are which goods in demand and used?
0	Step D: Inter- and intra-regional trade flows within Germany	Where in Germany do the demanded and used goods come from?
0	Step E: Harmonisation and model closure	

Preparation of regionalisation factor

- Data: Employment statistics by Federal Employment Agency
 - ⇒ Best level of detail on industry structures in Germany on NUTS 3 level
- Number of employees for 37 industries available for all 400 NUTS 3 regions
 - \Rightarrow **2023** as base year
 - Statistical disclosure control meant 960 out of 14,800 entries were blanks
 - ⇒ Gap-filling routine based on adjustments to known subtotals and totals
 - Calculation of regional employment share per industry

Step A: Regionalised production and intermediate uses

- Production for 37 industries in all 16 German Federal states (NUTS 1) is known from the GWS model INFORGE/LÄNDER
- **Regionalisation of production** is based on regional employment share:

```
yg_{k,i} = yg_{l,i} * emp_{k,i} / emp_{l,i}

yg: production emp: employment

k: NUTS 3 region l: associated NUTS 1 region

i: industry
```

Regionalisation of intermediate uses by 37 industries

- ⇒ Assumption: No regional differences in input structures
- ⇒ Average input structure of the respective industry in Germany is applied to all 400 regions

	Cons. exp. private households	Cons. exp. NPISH	Cons. exp. government	GFCF equipment	GFCF construction	CIV
	R1 R400	R1 R400	R1 R400	R1 R400	R1 R400	R1 R400
Industry 1	Income and Expenditure Survey	INFORGE	/LÄNDER	INFORGE/LÄNDER	INFORGE/LÄNDER	Share of production is assumed to be
	(EVS), Destatis: Assign consumer purposes to 37	Same per cap	Weighted consumption patterns Same per capita values as	National investment patterns between industries	Product group structure of respective investment	equal to national average in all NUTS 3 regions
	industries Regionalisation based on SynPop (PIK)	averages of the respective federal state; Same consumption patterns	&	activities &		
			as in national average for all regions	Regionalised production (Step A)	Regionalisation based on NUTS 3 statistics on	
					construction completion, Destatis	
Industry 37						

► Exports

⇒ Assumption: Share of export use in production is equal to **national average** in all regions

⇒ Specific weights for industrial products based on federal states' statistics

► Imports

- ⇒ Assumption: Import share in total domestic use is equal to **national average** in all regions
- ⇒ Different weights for
 - Intermediate use ⇒ Regionalised production (Step A)
 - **Final demand** ⇒ Regionalised final demand (Step B)

Gravity model with a two-step approach

1. Intra-regional trade shares: What share of used products originates from the local NUTS 3 region?

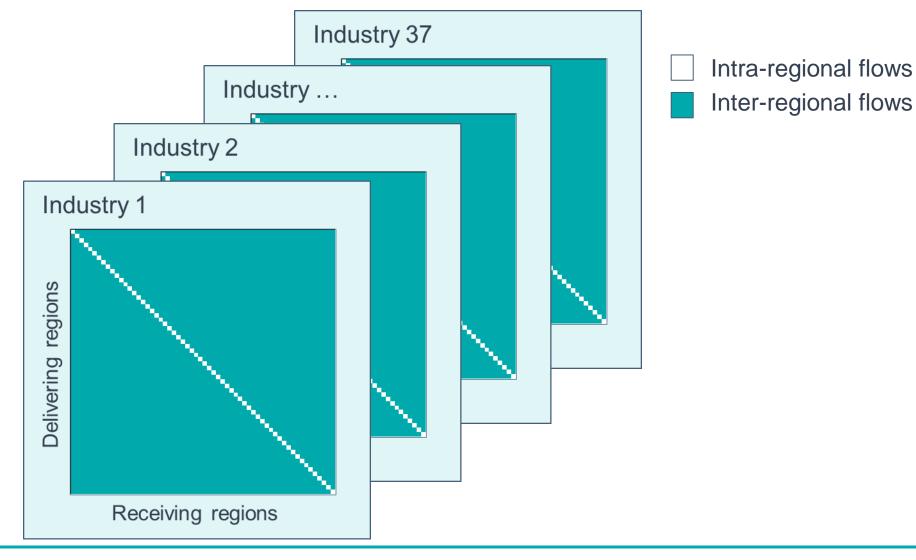
- Assumption: Share of intra-regional trade is higher, the higher the local production
- Goods group-specific approach: EU
 FIGARO data on trade by goods
- Coefficients estimated based on national market shares at EU level: Probability of intra-regional trade depends on the good

2. Inter-regional trade flows: Which other NUTS 3 regions in Germany supply the used products not sourced locally?

- Assumption: Share of goods that is not provided locally or internationally is sourced by inter-regional trade
- Use of EU trade shares to estimate origin of goods
- Regional distance matrix: Estimation of good specific distance-decay functions with EU Figaro data and distance matrix

- Good-group dependent differences
- **1. Intra-regional trade shares**
- Some goods and most services are highly local

2. Inter-regional trade flows

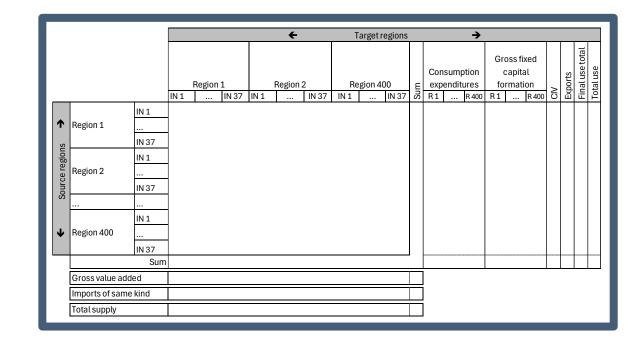

Trade shares of goods and services show strongly diverging distance dependencies

	Intra-regional trade		
Industry	Max.	Min.	
Construction	99.6%	75.6%	
IT Equipment	32.8%	23.5%	

Inter-regional trade				
Max.	Min.			
2.0%	0.0%			
58.9%	0.0%			

Step D: Trade within Germany

► Preliminary trade matrices of 400 by 400 regions for all 37 industries


► Trade matrices are preliminary

⇒ Initial imbalance between total use and total supply due to unbalanced regional allocation

- Marginal totals based on initial assessment of total domestic use and supply
 - \Rightarrow **Assumption:** CIV and exports are <u>not</u> traded among regions
 - Point of production equals point of use
- ► Trade share assessment for total use patterns across all 400 regions
 - ⇒ Rebalancing process
 - Adjust domestic trade flows and reallocate among regions through an iterative process
 - Result: Balanced trade share matrices ensuring consistent regional supply and use patterns

► RIMES Model closure

- 1. Compute inter-industry transactions (1st quadrant of the MRIO)
- 2. Calculate the technology coefficients
- 3. Derive the Leontief inverse matrix
- 4. Calculate the multi-regional final demand matrix (2nd quadrant of the MRIO)
- 5. Assess the Leontief inverse and derive resulting production values

Source: Own image

Outlook

Scenario analysis based on RIMES

- Development of scenarios for clean energy and heat transition in Germany
- ▶ Regionalization of private consumption based on demographic development (2030, 2040, 2050)

Application-oriented use of scenario results

Thank you for your attention!

Project partners Info-EW:

GLIS SPECIALISTS IN EMPIRICAL ECONOMIC RESEARCH Dr. Katharina Hembach-Stunden Dr. Britta Stöver (Project Lead) Philip Ulrich

Jakob Napiontek Dr. Peter Paul Pichler Prof. Dr. Helga Weisz

Christian Hahn (IT)

Further information:

Model RIMES

Project Info-EW

© 2025 GWS mbH

www.gws-os.com

Gesellschaft für Wirtschaftliche Strukturforschung mbH Heinrichstr. 30 49080 Osnabrück Tel + 49 (0) 541 40933-0

WWW.GWS-OS.COM / © GWS 2025